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A facile method for the stereoselective preparation of
(1E,3E)-4-substituted-1-amino-1,3-dienes via 1,4-elimination
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Abstract—The 1,4-elimination reaction of 1-amino-4-methoxy-(2Z)-alkenes is shown to proceed with high (1E,3E)-stereoselectivities
to afford the corresponding 4-substituted-1-amino-1,3-dienes in good yield. The scope and stereochemical features of the synthetic
method are described.
� 2007 Elsevier Ltd. All rights reserved.
Scheme 1. Application of 1,4-elimination for 1-amino derivatives.
1-Amino-1,3-dienes (1,3-dienamines or 1,3-dienamides)
are very useful building blocks, which work as active
diene components in the Diels–Alder reaction to afford
nitrogen-containing fused-ring compounds.1 The reac-
tive 1,3-dienamines are usually prepared by condensa-
tion of a,b- or b,c-unsaturated aldehydes or ketones
with secondary amines.2 The analogue, 1,3-dienamides,
which are less reactive and easily handled, are prepared
by N-acylation and isomerization of the N-acyliminium
ions.3 Overman has reported another preparative
method of 1,3-dienamides from 2,4-dienoic acids via
the Curtius rearrangement.4 However, the stereoselec-
tive preparative methods of 4-substituted-1-amino-1,
3-dienes has been limited. Recently, we reported an effi-
cient and stereoselective synthetic method of 1,3-dienyl
ethers (1-alkoxy-1,3-dienes) via the 1,4-elimination reac-
tion (Scheme 1, Eq. 1).5 With that method, we extended
the 1,4-elimination reaction to 1-amino analogues,
which would afford the corresponding 1-amino-1,3-
dienes (Eq. 2). We now wish to report that treatment
of 1-amino-4-methoxy-(2Z)-alkenes (1) with organic
bases affords the 1,3-dienamines or dienamides in high
(1E,3E)-stereoselectivities.

First, we carried out the reaction of (2Z)-N-(4-meth-
oxyoct-2-en-1-yl)-N-methylaniline (1a)6 with n-butyl-
lithium in diethyl ether (Table 1, entry 1). The
corresponding 1,4-elimination product, N-methyl-N-
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(oct-1,3-dien-1-yl)aniline (2a) was obtained in 96% yield
with high stereoselectivity [(1E,3E):(1Z,3E) = 96:4].7,8

The stereochemistry of 2a was assigned by 1H NMR
[J1H–2H = 13.4 Hz and J3H–4H = 15.0 Hz for (1E,3E),
and J1H–2H = 8.4 Hz and J3H–4H = 15.3 Hz for
(1Z,3E)]. Equally high (1E,3E)-stereoselectivity was
observed in the reaction in THF (entry 2). To define
the scope and limitation of the present 1,3-dienamine
forming reaction, we prepared a series of substrates
1b–i and carried out their reactions with n-butyllithium.
The corresponding 1,3-dienemines 2b–d were obtained
with good yield and excellent (1E,3E)-stereoselectivities
(entries 3–5). However, the reaction of more electron-
rich substrates such as N-(4-methylphenyl)-(1e) or
N-(4-methoxyphenyl)-derivatives (1f) gave 2e [(1E,3E):
(1Z,3E) = 89:11] or 2f [(1E,3E):(1Z,3E) = 74:26] with
lower stereoselectivities (entries 6,7). The reaction of
the 4-cyclohexyl derivative (1g) also afforded 2g
[(1E,3E):(1Z,3E) = 87:13] with lower selectivity (entry
8). However, the reaction of 4-phenyl derivative (1h)
or N-methyl-N-(1-phenyethyl) derivative (1i) as an
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Table 1. 1,4-Elimination reaction of 4-methoxy-(2Z)-alkenylamine derivatives (1) with n-butyllithium

Entry R1 R2 R3 Solvent Temp, time Yield (%)a (1E,3E):(1Z,3E)b

1 Ph Me n-Bu a Et2O 0 �C, 3 h, then rt, 1 h 96 96:4
2 Ph Me n-Bu a THF 0 �C, 2 h 88c 97:3
3 Ph CH2CH@CMe2 n-Bu b Et2O 0 �C, 2 h, then rt, 1 h 89 95:5
4 4-Cl-Ph Me n-Bu c Et2O 0 �C, 1 h, then rt, 2 h 79 95:5
5 4-CF3-Ph Me n-Bu d Et2O 0 �C, 1 h, then rt, 2 h 90 98:2
6 4-Me-Ph Me n-Bu e Et2O 0 �C, 1 h, then rt, 2 h 86 89:11
7 4-MeO-Ph Me n-Bu f Et2O 0 �C, 2 h, then rt, 1 h 68 74:26
8 Ph Me c-Hex g Et2O 0 �C, 1 h, then rt, 2 h 93 87:13
9 Ph Me Ph h Et2O 0 �C, 1 h, then rt, 2 h 0 —

10 CH(Me)Ph Me n-Bu i Et2O 0 �C, 1 h, then rt, 3 h 0 —

a Isolated yield after purification by chromatography on pH-controlled silica gel (pH = 9.5). For more details, see Supplementary data.
b The ratios were determined by 1H NMR assay.
c Include 7% of (1E,3Z)-isomer.

Scheme 2. The 1,4-elimination reaction of the 2E-isomer of 1a.
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aliphatic amine substrate9 gave a complex mixture of
unidentified products (entries 9 and 10).

Though its exact origin is unclear, the high (1E,3E)-ste-
reoselectivity of 1,4-elimination reaction of 1 may be
rationalized as a result of the precoordination of n-butyl-
lithium to the 4-ether oxygen to form complex A, which
leads to the (1E,3E)-isomer (Fig. 1). This precoordina-
tion would accelerate the (1E,3E)-stereoselective 1,4-
elimination reaction because the butyllithium is located
at the position close to the 1-proton (H1). Complex B
which leads to the (1E,3Z)-isomer would be sterically
less favorable than complex A. The formation of chelate
complex C10 would be suppressed by the steric repulsion
between the 4-methoxy and 1-bulky amino substituent.
However, the reaction of a more electron-rich substrate
such as 1f is accompanied by the 1,4-elimination via
complex C leading to lowered (1E,3E)-selectivity (Table
1, entry 7).

In fact, the reaction with the 2E-isomer of 1a gave a
complex mixture of unidentified products and 2a was
hardly observed (Scheme 2); the interaction of butyl-
lithium to the ether oxygen would not be expected at
the transition state of the reaction because of the E-
geometry of the double bond. This observation suggests
that the butyllithium should be located at the position
close to the 1-proton for the 1,4-elimination reaction.
Figure 1. Proposed mechanism of the stereoselective 1,4-elimination
reaction of 1a.
Next, we applied our 1,4-elimination reaction to the N-
tert-butoxycarbonyl (Boc) derivative 3a,11 which would
afford N-Boc-1,3-dienamide 4a (Table 2). The reaction
of 3a under the standard reaction condition (entry 1,
n-butyllithium in diethyl ether) gave 4a in lower yield
with no stereoselectivity [(1E,3E):(1E,3Z) = 59:41]. Use
of THF as a solvent (entry 2) or lithium diisopropyl-
amide (LDA) as a base (entry 3) did not show any
improvement of stereoselectivities. Interestingly how-
ever, use of lithium bis(trimethylsilyl)amide (LiHMDS)
as a base dramatically improved the stereoselectivity;
the ratio of (1E,3E):(1Z,3E) was 95:5 though the reac-
tion proceeded slowly (entry 4), while use of sodium
bis(trimethylsilyl)amide (NaHMDS) in THF gave a
complex mixture (entry 5). When the reaction was
carried out in diethyl ether–THF (4:1), the 1,4-elimina-
tion reaction proceeded smoothly to afford 4a in 71%
yield with high (1E,3E)-stereoselectivity (entry 6).12

To further expand the scope of the present stereoselec-
tive preparation of N-Boc-1,3-dienamides 4, we pre-
pared a series of N-Boc derivatives 3b–f and carried
out their reactions with NaHMDS in diethyl ether–
THF (4:1). As shown in Table 3, various types of N-
Boc-1,3-dienamides 4b–f were obtained with good yield
and high (1E,3E)-stereoselectivities.

At present, no reasonable explanation can be offered for
the pronounced effect of the bases on the stereoselectiv-
ity, while the high (1E,3E)-selectivity observed may be
explained as a result of the 1,4-elimination through com-



Table 2. Preparation of N-Boc-1,3-dienamide 4a by the stereoselective 1,4-elimination reaction

Entry Base Solvent Temp, time Yielda (%) drb

1 n-BuLi Et2O 0 �C, 2 h 57 59:41c

2 n-BuLi THF 0 �C, 2 h 58 54:46c

3 LDA THF 0 �C, 2 h 90 64:36c

4 LiHMDS THF rt, 5 h, then reflux, 1 h 70 95:5d

5 NaHMDS THF 0 �C, 2 h, then rt, 4 h 0 —
6 NaHMDS Et2O–THF (4:1) rt, 3 h 71 94:6d

a Isolated yield.
b The ratios were determined by 1H NMR assay.
c (1E,3E):(1E,3Z).
d (1E,3E):(1Z,3E).

Table 3. Preparation of various types of N-Boc-1,3-dienamides by the
stereoselective 1,4-elimination reaction

Entry Temp, time Yielda (%) (1E,3E):(1Z,3E)b

1 b 0 �C, 3 h, then rt, 1 h 98 >98:2
2 c 0 �C, 4 h, then rt, 7 h 83 >98:2
3 d 0 �C, 3 h, then rt, 1 h 99 96:4
4 e rt, 3 h, then reflux, 3 h 72 94:6
5c f �20 �C, 15 h 77 >98:2

a Isolated yield.
b The ratios were determined by 1H NMR assay.
c 2.0 equiv of NaHMDS was used.

Scheme 3. The 1,4-elimination reaction of the 2E-isomer of 3e.
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plex D as depicted in Figure 2. It is interesting to note
that a similar reaction of the (2E)-isomer of 3e afforded
a mixture (87:13) of the (1Z,3E)- and (1Z,3Z)-4e in a
70% combined yield (Scheme 3).13 Again, the mechanis-
tic origin of the (1Z)-selectivity observed here is unclear.
Further mechanistic studies are awaited.
Figure 2. Proposed mechanism of the stereoselective 1,4-elimination
reaction of 3.
Finally, the Diels–Alder reaction of the 4-substituted-1-
amino-1,3-dienes obtained was performed (Scheme 4).
The reactions of dienamine 2a or dienamide 4f with N-
phenylmaleimide in benzene proceeded smoothly to give
5 or 6 with good yield.
Scheme 4. The Diels–Alder reaction of 4-substituted-1-amino-1,3-
dienes.
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In summary, we have demonstrated that the 1,4-elimina-
tion reaction of 1-amino-4-methoxy-(2Z)-alkenes with
n-butyllithium or NaHMDS affords the corresponding
4-substituted-1-amino-1,3-dienes with good yield and
excellent (1E,3E)-stereoselectivities. Our method is
widely applicable for the preparation of different types
of the 1,3-dienamines and 1,3-dienamides.
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11. Prepared from N-Boc-aniline by the similar procedures to
those described for 1a. For more details, see Supplemen-
tary data.
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